Metamath Proof Explorer


Theorem elabd

Description: Explicit demonstration the class { x | ps } is not empty by the example A . (Contributed by RP, 12-Aug-2020) (Revised by AV, 23-Mar-2024)

Ref Expression
Hypotheses elabd.1 φ A V
elabd.2 φ χ
elabd.3 x = A ψ χ
Assertion elabd φ A x | ψ

Proof

Step Hyp Ref Expression
1 elabd.1 φ A V
2 elabd.2 φ χ
3 elabd.3 x = A ψ χ
4 3 elabg A V A x | ψ χ
5 1 4 syl φ A x | ψ χ
6 2 5 mpbird φ A x | ψ