Metamath Proof Explorer


Theorem elabd3

Description: Membership in a class abstraction, using implicit substitution. Deduction version of elab . (Contributed by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses elabd3.ex φ A V
elabd3.is φ x = A ψ χ
Assertion elabd3 φ A x | ψ χ

Proof

Step Hyp Ref Expression
1 elabd3.ex φ A V
2 elabd3.is φ x = A ψ χ
3 eqidd φ x | ψ = x | ψ
4 1 3 2 elabd2 φ A x | ψ χ