Metamath Proof Explorer


Theorem elabgOLD

Description: Obsolete version of elabg as of 5-Oct-2024. (Contributed by NM, 14-Apr-1995) Remove dependency on ax-13 . (Revised by SN, 23-Nov-2022) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis elabg.1 x=Aφψ
Assertion elabgOLD AVAx|φψ

Proof

Step Hyp Ref Expression
1 elabg.1 x=Aφψ
2 nfab1 _xx|φ
3 2 nfel2 xAx|φ
4 nfv xψ
5 3 4 nfbi xAx|φψ
6 eleq1 x=Axx|φAx|φ
7 6 1 bibi12d x=Axx|φφAx|φψ
8 abid xx|φφ
9 5 7 8 vtoclg1f AVAx|φψ