Metamath Proof Explorer


Theorem elabgf

Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003) (Revised by Mario Carneiro, 12-Oct-2016)

Ref Expression
Hypotheses elabgf.1 _ x A
elabgf.2 x ψ
elabgf.3 x = A φ ψ
Assertion elabgf A B A x | φ ψ

Proof

Step Hyp Ref Expression
1 elabgf.1 _ x A
2 elabgf.2 x ψ
3 elabgf.3 x = A φ ψ
4 nfab1 _ x x | φ
5 1 4 nfel x A x | φ
6 5 2 nfbi x A x | φ ψ
7 eleq1 x = A x x | φ A x | φ
8 7 3 bibi12d x = A x x | φ φ A x | φ ψ
9 abid x x | φ φ
10 1 6 8 9 vtoclgf A B A x | φ ψ