Metamath Proof Explorer


Theorem elabgt

Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg .) (Contributed by NM, 7-Nov-2005) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom usage. (Revised by Gino Giotto, 12-Oct-2024) (Proof shortend by Wolf Lammen, 11-May-2025.)

Ref Expression
Assertion elabgt A B x x = A φ ψ A x | φ ψ

Proof

Step Hyp Ref Expression
1 elab6g A B A x | φ x x = A φ
2 1 adantr A B x x = A φ ψ A x | φ x x = A φ
3 elisset A B x x = A
4 biimp φ ψ φ ψ
5 4 imim3i x = A φ ψ x = A φ x = A ψ
6 5 al2imi x x = A φ ψ x x = A φ x x = A ψ
7 19.23v x x = A ψ x x = A ψ
8 6 7 imbitrdi x x = A φ ψ x x = A φ x x = A ψ
9 3 8 syl7 x x = A φ ψ x x = A φ A B ψ
10 9 com3r A B x x = A φ ψ x x = A φ ψ
11 10 imp A B x x = A φ ψ x x = A φ ψ
12 biimpr φ ψ ψ φ
13 12 imim2i x = A φ ψ x = A ψ φ
14 13 com23 x = A φ ψ ψ x = A φ
15 14 alimi x x = A φ ψ x ψ x = A φ
16 19.21v x ψ x = A φ ψ x x = A φ
17 15 16 sylib x x = A φ ψ ψ x x = A φ
18 17 adantl A B x x = A φ ψ ψ x x = A φ
19 11 18 impbid A B x x = A φ ψ x x = A φ ψ
20 2 19 bitrd A B x x = A φ ψ A x | φ ψ