Metamath Proof Explorer


Theorem elabrex

Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014)

Ref Expression
Hypothesis elabrex.1 B V
Assertion elabrex x A B y | x A y = B

Proof

Step Hyp Ref Expression
1 elabrex.1 B V
2 tru
3 csbeq1a x = z B = z / x B
4 3 equcoms z = x B = z / x B
5 trud z = x
6 4 5 2thd z = x B = z / x B
7 6 rspcev x A z A B = z / x B
8 2 7 mpan2 x A z A B = z / x B
9 eqeq1 y = B y = z / x B B = z / x B
10 9 rexbidv y = B z A y = z / x B z A B = z / x B
11 1 10 elab B y | z A y = z / x B z A B = z / x B
12 8 11 sylibr x A B y | z A y = z / x B
13 nfv z y = B
14 nfcsb1v _ x z / x B
15 14 nfeq2 x y = z / x B
16 3 eqeq2d x = z y = B y = z / x B
17 13 15 16 cbvrexw x A y = B z A y = z / x B
18 17 abbii y | x A y = B = y | z A y = z / x B
19 12 18 eleqtrrdi x A B y | x A y = B