Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
elabrex
Next ⟩
abrexco
Metamath Proof Explorer
Ascii
Unicode
Theorem
elabrex
Description:
Elementhood in an image set.
(Contributed by
Mario Carneiro
, 14-Jan-2014)
Ref
Expression
Hypothesis
elabrex.1
⊢
B
∈
V
Assertion
elabrex
⊢
x
∈
A
→
B
∈
y
|
∃
x
∈
A
y
=
B
Proof
Step
Hyp
Ref
Expression
1
elabrex.1
⊢
B
∈
V
2
tru
⊢
⊤
3
csbeq1a
⊢
x
=
z
→
B
=
⦋
z
/
x
⦌
B
4
3
equcoms
⊢
z
=
x
→
B
=
⦋
z
/
x
⦌
B
5
trud
⊢
z
=
x
→
⊤
6
4
5
2thd
⊢
z
=
x
→
B
=
⦋
z
/
x
⦌
B
↔
⊤
7
6
rspcev
⊢
x
∈
A
∧
⊤
→
∃
z
∈
A
B
=
⦋
z
/
x
⦌
B
8
2
7
mpan2
⊢
x
∈
A
→
∃
z
∈
A
B
=
⦋
z
/
x
⦌
B
9
eqeq1
⊢
y
=
B
→
y
=
⦋
z
/
x
⦌
B
↔
B
=
⦋
z
/
x
⦌
B
10
9
rexbidv
⊢
y
=
B
→
∃
z
∈
A
y
=
⦋
z
/
x
⦌
B
↔
∃
z
∈
A
B
=
⦋
z
/
x
⦌
B
11
1
10
elab
⊢
B
∈
y
|
∃
z
∈
A
y
=
⦋
z
/
x
⦌
B
↔
∃
z
∈
A
B
=
⦋
z
/
x
⦌
B
12
8
11
sylibr
⊢
x
∈
A
→
B
∈
y
|
∃
z
∈
A
y
=
⦋
z
/
x
⦌
B
13
nfv
⊢
Ⅎ
z
y
=
B
14
nfcsb1v
⊢
Ⅎ
_
x
⦋
z
/
x
⦌
B
15
14
nfeq2
⊢
Ⅎ
x
y
=
⦋
z
/
x
⦌
B
16
3
eqeq2d
⊢
x
=
z
→
y
=
B
↔
y
=
⦋
z
/
x
⦌
B
17
13
15
16
cbvrexw
⊢
∃
x
∈
A
y
=
B
↔
∃
z
∈
A
y
=
⦋
z
/
x
⦌
B
18
17
abbii
⊢
y
|
∃
x
∈
A
y
=
B
=
y
|
∃
z
∈
A
y
=
⦋
z
/
x
⦌
B
19
12
18
eleqtrrdi
⊢
x
∈
A
→
B
∈
y
|
∃
x
∈
A
y
=
B