Metamath Proof Explorer


Theorem elabrexg

Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion elabrexg x A B V B y | x A y = B

Proof

Step Hyp Ref Expression
1 tru
2 csbeq1a x = z B = z / x B
3 2 equcoms z = x B = z / x B
4 trud z = x
5 3 4 2thd z = x B = z / x B
6 5 rspcev x A z A B = z / x B
7 1 6 mpan2 x A z A B = z / x B
8 7 adantr x A B V z A B = z / x B
9 eqeq1 y = B y = z / x B B = z / x B
10 9 rexbidv y = B z A y = z / x B z A B = z / x B
11 10 elabg B V B y | z A y = z / x B z A B = z / x B
12 11 adantl x A B V B y | z A y = z / x B z A B = z / x B
13 8 12 mpbird x A B V B y | z A y = z / x B
14 nfv z y = B
15 nfcsb1v _ x z / x B
16 15 nfeq2 x y = z / x B
17 2 eqeq2d x = z y = B y = z / x B
18 14 16 17 cbvrexw x A y = B z A y = z / x B
19 18 abbii y | x A y = B = y | z A y = z / x B
20 13 19 eleqtrrdi x A B V B y | x A y = B