Metamath Proof Explorer


Theorem elabreximd

Description: Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016)

Ref Expression
Hypotheses elabreximd.1 x φ
elabreximd.2 x χ
elabreximd.3 A = B χ ψ
elabreximd.4 φ A V
elabreximd.5 φ x C ψ
Assertion elabreximd φ A y | x C y = B χ

Proof

Step Hyp Ref Expression
1 elabreximd.1 x φ
2 elabreximd.2 x χ
3 elabreximd.3 A = B χ ψ
4 elabreximd.4 φ A V
5 elabreximd.5 φ x C ψ
6 eqeq1 y = A y = B A = B
7 6 rexbidv y = A x C y = B x C A = B
8 7 elabg A V A y | x C y = B x C A = B
9 4 8 syl φ A y | x C y = B x C A = B
10 9 biimpa φ A y | x C y = B x C A = B
11 simpr φ x C A = B A = B
12 5 adantr φ x C A = B ψ
13 3 biimpar A = B ψ χ
14 11 12 13 syl2anc φ x C A = B χ
15 14 exp31 φ x C A = B χ
16 1 2 15 rexlimd φ x C A = B χ
17 16 imp φ x C A = B χ
18 10 17 syldan φ A y | x C y = B χ