Metamath Proof Explorer


Theorem elabreximdv

Description: Class substitution in an image set. (Contributed by Thierry Arnoux, 30-Dec-2016)

Ref Expression
Hypotheses elabreximdv.1 A = B χ ψ
elabreximdv.2 φ A V
elabreximdv.3 φ x C ψ
Assertion elabreximdv φ A y | x C y = B χ

Proof

Step Hyp Ref Expression
1 elabreximdv.1 A = B χ ψ
2 elabreximdv.2 φ A V
3 elabreximdv.3 φ x C ψ
4 nfv x φ
5 nfv x χ
6 4 5 1 2 3 elabreximd φ A y | x C y = B χ