Metamath Proof Explorer


Theorem elbasfv

Description: Utility theorem: reverse closure for any structure defined as a function. (Contributed by Stefan O'Rear, 24-Aug-2015)

Ref Expression
Hypotheses elbasfv.s S = F Z
elbasfv.b B = Base S
Assertion elbasfv X B Z V

Proof

Step Hyp Ref Expression
1 elbasfv.s S = F Z
2 elbasfv.b B = Base S
3 n0i X B ¬ B =
4 fvprc ¬ Z V F Z =
5 1 4 eqtrid ¬ Z V S =
6 5 fveq2d ¬ Z V Base S = Base
7 base0 = Base
8 6 2 7 3eqtr4g ¬ Z V B =
9 3 8 nsyl2 X B Z V