Metamath Proof Explorer
Description: Utility theorem: reverse closure for any structure defined as a
function. (Contributed by Stefan O'Rear, 24-Aug-2015)
|
|
Ref |
Expression |
|
Hypotheses |
elbasfv.s |
|
|
|
elbasfv.b |
|
|
Assertion |
elbasfv |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elbasfv.s |
|
| 2 |
|
elbasfv.b |
|
| 3 |
|
n0i |
|
| 4 |
|
fvprc |
|
| 5 |
1 4
|
eqtrid |
|
| 6 |
5
|
fveq2d |
|
| 7 |
|
base0 |
|
| 8 |
6 2 7
|
3eqtr4g |
|
| 9 |
3 8
|
nsyl2 |
|