Metamath Proof Explorer


Theorem elbdop

Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 18-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elbdop T BndLinOp T LinOp norm op T < +∞

Proof

Step Hyp Ref Expression
1 fveq2 t = T norm op t = norm op T
2 1 breq1d t = T norm op t < +∞ norm op T < +∞
3 df-bdop BndLinOp = t LinOp | norm op t < +∞
4 2 3 elrab2 T BndLinOp T LinOp norm op T < +∞