Metamath Proof Explorer


Theorem elbdop2

Description: Property defining a bounded linear Hilbert space operator. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion elbdop2 T BndLinOp T LinOp norm op T

Proof

Step Hyp Ref Expression
1 elbdop T BndLinOp T LinOp norm op T < +∞
2 lnopf T LinOp T :
3 nmopreltpnf T : norm op T norm op T < +∞
4 2 3 syl T LinOp norm op T norm op T < +∞
5 4 pm5.32i T LinOp norm op T T LinOp norm op T < +∞
6 1 5 bitr4i T BndLinOp T LinOp norm op T