Database
BASIC TOPOLOGY
Metric spaces
Metric space balls
elbl2
Next ⟩
elbl3ps
Metamath Proof Explorer
Ascii
Unicode
Theorem
elbl2
Description:
Membership in a ball.
(Contributed by
NM
, 9-Mar-2007)
Ref
Expression
Assertion
elbl2
⊢
D
∈
∞Met
⁡
X
∧
R
∈
ℝ
*
∧
P
∈
X
∧
A
∈
X
→
A
∈
P
ball
⁡
D
R
↔
P
D
A
<
R
Proof
Step
Hyp
Ref
Expression
1
simprr
⊢
D
∈
∞Met
⁡
X
∧
R
∈
ℝ
*
∧
P
∈
X
∧
A
∈
X
→
A
∈
X
2
elbl
⊢
D
∈
∞Met
⁡
X
∧
P
∈
X
∧
R
∈
ℝ
*
→
A
∈
P
ball
⁡
D
R
↔
A
∈
X
∧
P
D
A
<
R
3
2
3expa
⊢
D
∈
∞Met
⁡
X
∧
P
∈
X
∧
R
∈
ℝ
*
→
A
∈
P
ball
⁡
D
R
↔
A
∈
X
∧
P
D
A
<
R
4
3
an32s
⊢
D
∈
∞Met
⁡
X
∧
R
∈
ℝ
*
∧
P
∈
X
→
A
∈
P
ball
⁡
D
R
↔
A
∈
X
∧
P
D
A
<
R
5
4
adantrr
⊢
D
∈
∞Met
⁡
X
∧
R
∈
ℝ
*
∧
P
∈
X
∧
A
∈
X
→
A
∈
P
ball
⁡
D
R
↔
A
∈
X
∧
P
D
A
<
R
6
1
5
mpbirand
⊢
D
∈
∞Met
⁡
X
∧
R
∈
ℝ
*
∧
P
∈
X
∧
A
∈
X
→
A
∈
P
ball
⁡
D
R
↔
P
D
A
<
R