Metamath Proof Explorer


Theorem elbl2

Description: Membership in a ball. (Contributed by NM, 9-Mar-2007)

Ref Expression
Assertion elbl2 D ∞Met X R * P X A X A P ball D R P D A < R

Proof

Step Hyp Ref Expression
1 simprr D ∞Met X R * P X A X A X
2 elbl D ∞Met X P X R * A P ball D R A X P D A < R
3 2 3expa D ∞Met X P X R * A P ball D R A X P D A < R
4 3 an32s D ∞Met X R * P X A P ball D R A X P D A < R
5 4 adantrr D ∞Met X R * P X A X A P ball D R A X P D A < R
6 1 5 mpbirand D ∞Met X R * P X A X A P ball D R P D A < R