Metamath Proof Explorer


Theorem elbl2ps

Description: Membership in a ball. (Contributed by NM, 9-Mar-2007) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion elbl2ps DPsMetXR*PXAXAPballDRPDA<R

Proof

Step Hyp Ref Expression
1 simprr DPsMetXR*PXAXAX
2 elblps DPsMetXPXR*APballDRAXPDA<R
3 2 3expa DPsMetXPXR*APballDRAXPDA<R
4 3 an32s DPsMetXR*PXAPballDRAXPDA<R
5 4 adantrr DPsMetXR*PXAXAPballDRAXPDA<R
6 1 5 mpbirand DPsMetXR*PXAXAPballDRPDA<R