Metamath Proof Explorer


Theorem elbl2ps

Description: Membership in a ball. (Contributed by NM, 9-Mar-2007) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion elbl2ps D PsMet X R * P X A X A P ball D R P D A < R

Proof

Step Hyp Ref Expression
1 simprr D PsMet X R * P X A X A X
2 elblps D PsMet X P X R * A P ball D R A X P D A < R
3 2 3expa D PsMet X P X R * A P ball D R A X P D A < R
4 3 an32s D PsMet X R * P X A P ball D R A X P D A < R
5 4 adantrr D PsMet X R * P X A X A P ball D R A X P D A < R
6 1 5 mpbirand D PsMet X R * P X A X A P ball D R P D A < R