Metamath Proof Explorer


Theorem elbl3

Description: Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007)

Ref Expression
Assertion elbl3 D ∞Met X R * P X A X A P ball D R A D P < R

Proof

Step Hyp Ref Expression
1 elbl2 D ∞Met X R * P X A X A P ball D R P D A < R
2 xmetsym D ∞Met X P X A X P D A = A D P
3 2 3expb D ∞Met X P X A X P D A = A D P
4 3 adantlr D ∞Met X R * P X A X P D A = A D P
5 4 breq1d D ∞Met X R * P X A X P D A < R A D P < R
6 1 5 bitrd D ∞Met X R * P X A X A P ball D R A D P < R