Metamath Proof Explorer


Theorem elbl3ps

Description: Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007)

Ref Expression
Assertion elbl3ps DPsMetXR*PXAXAPballDRADP<R

Proof

Step Hyp Ref Expression
1 elbl2ps DPsMetXR*PXAXAPballDRPDA<R
2 psmetsym DPsMetXPXAXPDA=ADP
3 2 3expb DPsMetXPXAXPDA=ADP
4 3 adantlr DPsMetXR*PXAXPDA=ADP
5 4 breq1d DPsMetXR*PXAXPDA<RADP<R
6 1 5 bitrd DPsMetXR*PXAXAPballDRADP<R