Metamath Proof Explorer


Theorem elbl4

Description: Membership in a ball, alternative definition. (Contributed by Thierry Arnoux, 26-Jan-2018) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion elbl4 D PsMet X R + A X B X B A ball D R B D -1 0 R A

Proof

Step Hyp Ref Expression
1 rpxr R + R *
2 blcomps D PsMet X R * A X B X B A ball D R A B ball D R
3 1 2 sylanl2 D PsMet X R + A X B X B A ball D R A B ball D R
4 simpll D PsMet X R + A X B X D PsMet X
5 simprr D PsMet X R + A X B X B X
6 simplr D PsMet X R + A X B X R +
7 blval2 D PsMet X B X R + B ball D R = D -1 0 R B
8 7 eleq2d D PsMet X B X R + A B ball D R A D -1 0 R B
9 4 5 6 8 syl3anc D PsMet X R + A X B X A B ball D R A D -1 0 R B
10 elimasng B X A X A D -1 0 R B B A D -1 0 R
11 df-br B D -1 0 R A B A D -1 0 R
12 10 11 bitr4di B X A X A D -1 0 R B B D -1 0 R A
13 12 ancoms A X B X A D -1 0 R B B D -1 0 R A
14 13 adantl D PsMet X R + A X B X A D -1 0 R B B D -1 0 R A
15 3 9 14 3bitrd D PsMet X R + A X B X B A ball D R B D -1 0 R A