Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
|
2 |
1
|
cmclsopn |
|
3 |
2
|
3adant3 |
|
4 |
3
|
adantr |
|
5 |
|
eldif |
|
6 |
5
|
biimpri |
|
7 |
6
|
3ad2antl3 |
|
8 |
|
simpr |
|
9 |
1
|
sscls |
|
10 |
8 9
|
ssind |
|
11 |
|
dfin4 |
|
12 |
10 11
|
sseqtrdi |
|
13 |
|
reldisj |
|
14 |
13
|
adantl |
|
15 |
12 14
|
mpbird |
|
16 |
|
nne |
|
17 |
|
incom |
|
18 |
17
|
eqeq1i |
|
19 |
16 18
|
bitri |
|
20 |
15 19
|
sylibr |
|
21 |
20
|
3adant3 |
|
22 |
21
|
adantr |
|
23 |
|
eleq2 |
|
24 |
|
ineq1 |
|
25 |
24
|
neeq1d |
|
26 |
25
|
notbid |
|
27 |
23 26
|
anbi12d |
|
28 |
27
|
rspcev |
|
29 |
4 7 22 28
|
syl12anc |
|
30 |
|
incom |
|
31 |
30
|
eqeq1i |
|
32 |
|
df-ne |
|
33 |
32
|
con2bii |
|
34 |
31 33
|
bitri |
|
35 |
1
|
opncld |
|
36 |
35
|
adantlr |
|
37 |
|
reldisj |
|
38 |
37
|
biimpa |
|
39 |
38
|
ad4ant24 |
|
40 |
1
|
clsss2 |
|
41 |
36 39 40
|
syl2an2r |
|
42 |
41
|
sseld |
|
43 |
|
eldifn |
|
44 |
42 43
|
syl6 |
|
45 |
44
|
con2d |
|
46 |
34 45
|
sylan2br |
|
47 |
46
|
exp31 |
|
48 |
47
|
com34 |
|
49 |
48
|
imp4a |
|
50 |
49
|
rexlimdv |
|
51 |
50
|
imp |
|
52 |
51
|
3adantl3 |
|
53 |
29 52
|
impbida |
|
54 |
|
rexanali |
|
55 |
53 54
|
bitrdi |
|
56 |
55
|
con4bid |
|