Metamath Proof Explorer


Theorem elcls2

Description: Membership in a closure. (Contributed by NM, 5-Mar-2007)

Ref Expression
Hypothesis clscld.1 X = J
Assertion elcls2 J Top S X P cls J S P X x J P x x S

Proof

Step Hyp Ref Expression
1 clscld.1 X = J
2 1 clsss3 J Top S X cls J S X
3 ssel cls J S X P cls J S P X
4 3 pm4.71rd cls J S X P cls J S P X P cls J S
5 2 4 syl J Top S X P cls J S P X P cls J S
6 1 elcls J Top S X P X P cls J S x J P x x S
7 6 3expa J Top S X P X P cls J S x J P x x S
8 7 pm5.32da J Top S X P X P cls J S P X x J P x x S
9 5 8 bitrd J Top S X P cls J S P X x J P x x S