Database
BASIC TOPOLOGY
Topology
Closure and interior
elcls2
Next ⟩
clsndisj
Metamath Proof Explorer
Ascii
Unicode
Theorem
elcls2
Description:
Membership in a closure.
(Contributed by
NM
, 5-Mar-2007)
Ref
Expression
Hypothesis
clscld.1
⊢
X
=
⋃
J
Assertion
elcls2
⊢
J
∈
Top
∧
S
⊆
X
→
P
∈
cls
⁡
J
⁡
S
↔
P
∈
X
∧
∀
x
∈
J
P
∈
x
→
x
∩
S
≠
∅
Proof
Step
Hyp
Ref
Expression
1
clscld.1
⊢
X
=
⋃
J
2
1
clsss3
⊢
J
∈
Top
∧
S
⊆
X
→
cls
⁡
J
⁡
S
⊆
X
3
ssel
⊢
cls
⁡
J
⁡
S
⊆
X
→
P
∈
cls
⁡
J
⁡
S
→
P
∈
X
4
3
pm4.71rd
⊢
cls
⁡
J
⁡
S
⊆
X
→
P
∈
cls
⁡
J
⁡
S
↔
P
∈
X
∧
P
∈
cls
⁡
J
⁡
S
5
2
4
syl
⊢
J
∈
Top
∧
S
⊆
X
→
P
∈
cls
⁡
J
⁡
S
↔
P
∈
X
∧
P
∈
cls
⁡
J
⁡
S
6
1
elcls
⊢
J
∈
Top
∧
S
⊆
X
∧
P
∈
X
→
P
∈
cls
⁡
J
⁡
S
↔
∀
x
∈
J
P
∈
x
→
x
∩
S
≠
∅
7
6
3expa
⊢
J
∈
Top
∧
S
⊆
X
∧
P
∈
X
→
P
∈
cls
⁡
J
⁡
S
↔
∀
x
∈
J
P
∈
x
→
x
∩
S
≠
∅
8
7
pm5.32da
⊢
J
∈
Top
∧
S
⊆
X
→
P
∈
X
∧
P
∈
cls
⁡
J
⁡
S
↔
P
∈
X
∧
∀
x
∈
J
P
∈
x
→
x
∩
S
≠
∅
9
5
8
bitrd
⊢
J
∈
Top
∧
S
⊆
X
→
P
∈
cls
⁡
J
⁡
S
↔
P
∈
X
∧
∀
x
∈
J
P
∈
x
→
x
∩
S
≠
∅