Metamath Proof Explorer


Theorem elcncf

Description: Membership in the set of continuous complex functions from A to B . (Contributed by Paul Chapman, 11-Oct-2007) (Revised by Mario Carneiro, 9-Nov-2013)

Ref Expression
Assertion elcncf A B F : A cn B F : A B x A y + z + w A x w < z F x F w < y

Proof

Step Hyp Ref Expression
1 cncfval A B A cn B = f B A | x A y + z + w A x w < z f x f w < y
2 1 eleq2d A B F : A cn B F f B A | x A y + z + w A x w < z f x f w < y
3 fveq1 f = F f x = F x
4 fveq1 f = F f w = F w
5 3 4 oveq12d f = F f x f w = F x F w
6 5 fveq2d f = F f x f w = F x F w
7 6 breq1d f = F f x f w < y F x F w < y
8 7 imbi2d f = F x w < z f x f w < y x w < z F x F w < y
9 8 rexralbidv f = F z + w A x w < z f x f w < y z + w A x w < z F x F w < y
10 9 2ralbidv f = F x A y + z + w A x w < z f x f w < y x A y + z + w A x w < z F x F w < y
11 10 elrab F f B A | x A y + z + w A x w < z f x f w < y F B A x A y + z + w A x w < z F x F w < y
12 2 11 bitrdi A B F : A cn B F B A x A y + z + w A x w < z F x F w < y
13 cnex V
14 13 ssex B B V
15 13 ssex A A V
16 elmapg B V A V F B A F : A B
17 14 15 16 syl2anr A B F B A F : A B
18 17 anbi1d A B F B A x A y + z + w A x w < z F x F w < y F : A B x A y + z + w A x w < z F x F w < y
19 12 18 bitrd A B F : A cn B F : A B x A y + z + w A x w < z F x F w < y