Metamath Proof Explorer


Theorem elcncf1ii

Description: Membership in the set of continuous complex functions from A to B . (Contributed by Paul Chapman, 26-Nov-2007)

Ref Expression
Hypotheses elcncf1i.1 F : A B
elcncf1i.2 x A y + Z +
elcncf1i.3 x A w A y + x w < Z F x F w < y
Assertion elcncf1ii A B F : A cn B

Proof

Step Hyp Ref Expression
1 elcncf1i.1 F : A B
2 elcncf1i.2 x A y + Z +
3 elcncf1i.3 x A w A y + x w < Z F x F w < y
4 1 a1i F : A B
5 2 a1i x A y + Z +
6 3 a1i x A w A y + x w < Z F x F w < y
7 4 5 6 elcncf1di A B F : A cn B
8 7 mptru A B F : A cn B