Metamath Proof Explorer


Theorem elcnop

Description: Property defining a continuous Hilbert space operator. (Contributed by NM, 28-Jan-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion elcnop T ContOp T : x y + z + w norm w - x < z norm T w - T x < y

Proof

Step Hyp Ref Expression
1 fveq1 t = T t w = T w
2 fveq1 t = T t x = T x
3 1 2 oveq12d t = T t w - t x = T w - T x
4 3 fveq2d t = T norm t w - t x = norm T w - T x
5 4 breq1d t = T norm t w - t x < y norm T w - T x < y
6 5 imbi2d t = T norm w - x < z norm t w - t x < y norm w - x < z norm T w - T x < y
7 6 rexralbidv t = T z + w norm w - x < z norm t w - t x < y z + w norm w - x < z norm T w - T x < y
8 7 2ralbidv t = T x y + z + w norm w - x < z norm t w - t x < y x y + z + w norm w - x < z norm T w - T x < y
9 df-cnop ContOp = t | x y + z + w norm w - x < z norm t w - t x < y
10 8 9 elrab2 T ContOp T x y + z + w norm w - x < z norm T w - T x < y
11 ax-hilex V
12 11 11 elmap T T :
13 12 anbi1i T x y + z + w norm w - x < z norm T w - T x < y T : x y + z + w norm w - x < z norm T w - T x < y
14 10 13 bitri T ContOp T : x y + z + w norm w - x < z norm T w - T x < y