Database
BASIC ALGEBRAIC STRUCTURES
Groups
Centralizers and centers
elcntz
Next ⟩
cntzel
Metamath Proof Explorer
Ascii
Unicode
Theorem
elcntz
Description:
Elementhood in the centralizer.
(Contributed by
Mario Carneiro
, 22-Sep-2015)
Ref
Expression
Hypotheses
cntzfval.b
⊢
B
=
Base
M
cntzfval.p
⊢
+
˙
=
+
M
cntzfval.z
⊢
Z
=
Cntz
⁡
M
Assertion
elcntz
⊢
S
⊆
B
→
A
∈
Z
⁡
S
↔
A
∈
B
∧
∀
y
∈
S
A
+
˙
y
=
y
+
˙
A
Proof
Step
Hyp
Ref
Expression
1
cntzfval.b
⊢
B
=
Base
M
2
cntzfval.p
⊢
+
˙
=
+
M
3
cntzfval.z
⊢
Z
=
Cntz
⁡
M
4
1
2
3
cntzval
⊢
S
⊆
B
→
Z
⁡
S
=
x
∈
B
|
∀
y
∈
S
x
+
˙
y
=
y
+
˙
x
5
4
eleq2d
⊢
S
⊆
B
→
A
∈
Z
⁡
S
↔
A
∈
x
∈
B
|
∀
y
∈
S
x
+
˙
y
=
y
+
˙
x
6
oveq1
⊢
x
=
A
→
x
+
˙
y
=
A
+
˙
y
7
oveq2
⊢
x
=
A
→
y
+
˙
x
=
y
+
˙
A
8
6
7
eqeq12d
⊢
x
=
A
→
x
+
˙
y
=
y
+
˙
x
↔
A
+
˙
y
=
y
+
˙
A
9
8
ralbidv
⊢
x
=
A
→
∀
y
∈
S
x
+
˙
y
=
y
+
˙
x
↔
∀
y
∈
S
A
+
˙
y
=
y
+
˙
A
10
9
elrab
⊢
A
∈
x
∈
B
|
∀
y
∈
S
x
+
˙
y
=
y
+
˙
x
↔
A
∈
B
∧
∀
y
∈
S
A
+
˙
y
=
y
+
˙
A
11
5
10
bitrdi
⊢
S
⊆
B
→
A
∈
Z
⁡
S
↔
A
∈
B
∧
∀
y
∈
S
A
+
˙
y
=
y
+
˙
A