Metamath Proof Explorer


Theorem elcnv

Description: Membership in a converse relation. Equation 5 of Suppes p. 62. (Contributed by NM, 24-Mar-1998)

Ref Expression
Assertion elcnv A R -1 x y A = x y y R x

Proof

Step Hyp Ref Expression
1 df-cnv R -1 = x y | y R x
2 1 eleq2i A R -1 A x y | y R x
3 elopab A x y | y R x x y A = x y y R x
4 2 3 bitri A R -1 x y A = x y y R x