Metamath Proof Explorer


Theorem elcnv2

Description: Membership in a converse relation. Equation 5 of Suppes p. 62. (Contributed by NM, 11-Aug-2004)

Ref Expression
Assertion elcnv2 A R -1 x y A = x y y x R

Proof

Step Hyp Ref Expression
1 elcnv A R -1 x y A = x y y R x
2 df-br y R x y x R
3 2 anbi2i A = x y y R x A = x y y x R
4 3 2exbii x y A = x y y R x x y A = x y y x R
5 1 4 bitri A R -1 x y A = x y y x R