Metamath Proof Explorer


Theorem eldif

Description: Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion eldif ABCAB¬AC

Proof

Step Hyp Ref Expression
1 elex ABCAV
2 elex ABAV
3 2 adantr AB¬ACAV
4 eleq1 x=AxBAB
5 eleq1 x=AxCAC
6 5 notbid x=A¬xC¬AC
7 4 6 anbi12d x=AxB¬xCAB¬AC
8 df-dif BC=x|xB¬xC
9 7 8 elab2g AVABCAB¬AC
10 1 3 9 pm5.21nii ABCAB¬AC