Metamath Proof Explorer


Theorem eldifeldifsn

Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022)

Ref Expression
Assertion eldifeldifsn X A Y B A Y B X

Proof

Step Hyp Ref Expression
1 snssi X A X A
2 1 sscond X A B A B X
3 2 sselda X A Y B A Y B X