Metamath Proof Explorer


Theorem eldifpw

Description: Membership in a power class difference. (Contributed by NM, 25-Mar-2007)

Ref Expression
Hypothesis eldifpw.1 C V
Assertion eldifpw A 𝒫 B ¬ C B A C 𝒫 B C 𝒫 B

Proof

Step Hyp Ref Expression
1 eldifpw.1 C V
2 elpwi A 𝒫 B A B
3 unss1 A B A C B C
4 unexg A 𝒫 B C V A C V
5 1 4 mpan2 A 𝒫 B A C V
6 elpwg A C V A C 𝒫 B C A C B C
7 5 6 syl A 𝒫 B A C 𝒫 B C A C B C
8 3 7 syl5ibr A 𝒫 B A B A C 𝒫 B C
9 2 8 mpd A 𝒫 B A C 𝒫 B C
10 elpwi A C 𝒫 B A C B
11 10 unssbd A C 𝒫 B C B
12 11 con3i ¬ C B ¬ A C 𝒫 B
13 9 12 anim12i A 𝒫 B ¬ C B A C 𝒫 B C ¬ A C 𝒫 B
14 eldif A C 𝒫 B C 𝒫 B A C 𝒫 B C ¬ A C 𝒫 B
15 13 14 sylibr A 𝒫 B ¬ C B A C 𝒫 B C 𝒫 B