Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Introduce the Axiom of Union
eldifpw
Next ⟩
elpwun
Metamath Proof Explorer
Ascii
Unicode
Theorem
eldifpw
Description:
Membership in a power class difference.
(Contributed by
NM
, 25-Mar-2007)
Ref
Expression
Hypothesis
eldifpw.1
⊢
C
∈
V
Assertion
eldifpw
⊢
A
∈
𝒫
B
∧
¬
C
⊆
B
→
A
∪
C
∈
𝒫
B
∪
C
∖
𝒫
B
Proof
Step
Hyp
Ref
Expression
1
eldifpw.1
⊢
C
∈
V
2
elpwi
⊢
A
∈
𝒫
B
→
A
⊆
B
3
unss1
⊢
A
⊆
B
→
A
∪
C
⊆
B
∪
C
4
unexg
⊢
A
∈
𝒫
B
∧
C
∈
V
→
A
∪
C
∈
V
5
1
4
mpan2
⊢
A
∈
𝒫
B
→
A
∪
C
∈
V
6
elpwg
⊢
A
∪
C
∈
V
→
A
∪
C
∈
𝒫
B
∪
C
↔
A
∪
C
⊆
B
∪
C
7
5
6
syl
⊢
A
∈
𝒫
B
→
A
∪
C
∈
𝒫
B
∪
C
↔
A
∪
C
⊆
B
∪
C
8
3
7
syl5ibr
⊢
A
∈
𝒫
B
→
A
⊆
B
→
A
∪
C
∈
𝒫
B
∪
C
9
2
8
mpd
⊢
A
∈
𝒫
B
→
A
∪
C
∈
𝒫
B
∪
C
10
elpwi
⊢
A
∪
C
∈
𝒫
B
→
A
∪
C
⊆
B
11
10
unssbd
⊢
A
∪
C
∈
𝒫
B
→
C
⊆
B
12
11
con3i
⊢
¬
C
⊆
B
→
¬
A
∪
C
∈
𝒫
B
13
9
12
anim12i
⊢
A
∈
𝒫
B
∧
¬
C
⊆
B
→
A
∪
C
∈
𝒫
B
∪
C
∧
¬
A
∪
C
∈
𝒫
B
14
eldif
⊢
A
∪
C
∈
𝒫
B
∪
C
∖
𝒫
B
↔
A
∪
C
∈
𝒫
B
∪
C
∧
¬
A
∪
C
∈
𝒫
B
15
13
14
sylibr
⊢
A
∈
𝒫
B
∧
¬
C
⊆
B
→
A
∪
C
∈
𝒫
B
∪
C
∖
𝒫
B