Metamath Proof Explorer


Theorem eldifsnd

Description: Membership in a set with an element removed : deduction version. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses eldifsnd.1 φ A B
eldifsnd.2 φ A C
Assertion eldifsnd φ A B C

Proof

Step Hyp Ref Expression
1 eldifsnd.1 φ A B
2 eldifsnd.2 φ A C
3 eldifsn A B C A B A C
4 1 2 3 sylanbrc φ A B C