Metamath Proof Explorer
Description: Membership in a set with an element removed : deduction version.
(Contributed by Thierry Arnoux, 4-May-2025)
|
|
Ref |
Expression |
|
Hypotheses |
eldifsnd.1 |
|
|
|
eldifsnd.2 |
|
|
Assertion |
eldifsnd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsnd.1 |
|
2 |
|
eldifsnd.2 |
|
3 |
|
eldifsn |
|
4 |
1 2 3
|
sylanbrc |
|