Metamath Proof Explorer


Theorem eldifvsn

Description: A set is an element of the universal class excluding a singleton iff it is not the singleton element. (Contributed by AV, 7-Apr-2019)

Ref Expression
Assertion eldifvsn A V A V B A B

Proof

Step Hyp Ref Expression
1 eldifsn A V B A V A B
2 elex A V A V
3 2 biantrurd A V A B A V A B
4 1 3 bitr4id A V A V B A B