Metamath Proof Explorer


Theorem eldioph2lem2

Description: Lemma for eldioph2 . Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014)

Ref Expression
Assertion eldioph2lem2 N 0 ¬ S Fin 1 N S A N c c : 1 A 1-1 S c 1 N = I 1 N

Proof

Step Hyp Ref Expression
1 simplr N 0 ¬ S Fin 1 N S A N ¬ S Fin
2 fzfi 1 N Fin
3 difinf ¬ S Fin 1 N Fin ¬ S 1 N Fin
4 1 2 3 sylancl N 0 ¬ S Fin 1 N S A N ¬ S 1 N Fin
5 fzfi 1 A Fin
6 diffi 1 A Fin 1 A 1 N Fin
7 5 6 ax-mp 1 A 1 N Fin
8 isinffi ¬ S 1 N Fin 1 A 1 N Fin a a : 1 A 1 N 1-1 S 1 N
9 4 7 8 sylancl N 0 ¬ S Fin 1 N S A N a a : 1 A 1 N 1-1 S 1 N
10 f1f1orn a : 1 A 1 N 1-1 S 1 N a : 1 A 1 N 1-1 onto ran a
11 10 adantl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a : 1 A 1 N 1-1 onto ran a
12 f1oi I 1 N : 1 N 1-1 onto 1 N
13 12 a1i N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N I 1 N : 1 N 1-1 onto 1 N
14 incom 1 A 1 N 1 N = 1 N 1 A 1 N
15 disjdif 1 N 1 A 1 N =
16 14 15 eqtri 1 A 1 N 1 N =
17 16 a1i N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 A 1 N 1 N =
18 f1f a : 1 A 1 N 1-1 S 1 N a : 1 A 1 N S 1 N
19 18 frnd a : 1 A 1 N 1-1 S 1 N ran a S 1 N
20 19 adantl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a S 1 N
21 20 ssrind N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a 1 N S 1 N 1 N
22 incom S 1 N 1 N = 1 N S 1 N
23 disjdif 1 N S 1 N =
24 22 23 eqtri S 1 N 1 N =
25 21 24 sseqtrdi N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a 1 N
26 ss0 ran a 1 N ran a 1 N =
27 25 26 syl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a 1 N =
28 f1oun a : 1 A 1 N 1-1 onto ran a I 1 N : 1 N 1-1 onto 1 N 1 A 1 N 1 N = ran a 1 N = a I 1 N : 1 A 1 N 1 N 1-1 onto ran a 1 N
29 11 13 17 27 28 syl22anc N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N : 1 A 1 N 1 N 1-1 onto ran a 1 N
30 f1of1 a I 1 N : 1 A 1 N 1 N 1-1 onto ran a 1 N a I 1 N : 1 A 1 N 1 N 1-1 ran a 1 N
31 29 30 syl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N : 1 A 1 N 1 N 1-1 ran a 1 N
32 uncom 1 A 1 N 1 N = 1 N 1 A 1 N
33 simplrr N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N A N
34 fzss2 A N 1 N 1 A
35 33 34 syl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 N 1 A
36 undif 1 N 1 A 1 N 1 A 1 N = 1 A
37 35 36 sylib N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 N 1 A 1 N = 1 A
38 32 37 syl5eq N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 A 1 N 1 N = 1 A
39 f1eq2 1 A 1 N 1 N = 1 A a I 1 N : 1 A 1 N 1 N 1-1 ran a 1 N a I 1 N : 1 A 1-1 ran a 1 N
40 38 39 syl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N : 1 A 1 N 1 N 1-1 ran a 1 N a I 1 N : 1 A 1-1 ran a 1 N
41 31 40 mpbid N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N : 1 A 1-1 ran a 1 N
42 19 difss2d a : 1 A 1 N 1-1 S 1 N ran a S
43 42 adantl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a S
44 simplrl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 N S
45 43 44 unssd N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a 1 N S
46 f1ss a I 1 N : 1 A 1-1 ran a 1 N ran a 1 N S a I 1 N : 1 A 1-1 S
47 41 45 46 syl2anc N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N : 1 A 1-1 S
48 resundir a I 1 N 1 N = a 1 N I 1 N 1 N
49 dmres dom a 1 N = 1 N dom a
50 incom 1 N dom a = dom a 1 N
51 f1dm a : 1 A 1 N 1-1 S 1 N dom a = 1 A 1 N
52 51 adantl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N dom a = 1 A 1 N
53 52 ineq1d N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N dom a 1 N = 1 A 1 N 1 N
54 53 16 syl6eq N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N dom a 1 N =
55 50 54 syl5eq N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 N dom a =
56 49 55 syl5eq N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N dom a 1 N =
57 relres Rel a 1 N
58 reldm0 Rel a 1 N a 1 N = dom a 1 N =
59 57 58 ax-mp a 1 N = dom a 1 N =
60 56 59 sylibr N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a 1 N =
61 residm I 1 N 1 N = I 1 N
62 61 a1i N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N I 1 N 1 N = I 1 N
63 60 62 uneq12d N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a 1 N I 1 N 1 N = I 1 N
64 uncom I 1 N = I 1 N
65 un0 I 1 N = I 1 N
66 64 65 eqtri I 1 N = I 1 N
67 63 66 syl6eq N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a 1 N I 1 N 1 N = I 1 N
68 48 67 syl5eq N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N 1 N = I 1 N
69 vex a V
70 ovex 1 N V
71 resiexg 1 N V I 1 N V
72 70 71 ax-mp I 1 N V
73 69 72 unex a I 1 N V
74 f1eq1 c = a I 1 N c : 1 A 1-1 S a I 1 N : 1 A 1-1 S
75 reseq1 c = a I 1 N c 1 N = a I 1 N 1 N
76 75 eqeq1d c = a I 1 N c 1 N = I 1 N a I 1 N 1 N = I 1 N
77 74 76 anbi12d c = a I 1 N c : 1 A 1-1 S c 1 N = I 1 N a I 1 N : 1 A 1-1 S a I 1 N 1 N = I 1 N
78 73 77 spcev a I 1 N : 1 A 1-1 S a I 1 N 1 N = I 1 N c c : 1 A 1-1 S c 1 N = I 1 N
79 47 68 78 syl2anc N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N c c : 1 A 1-1 S c 1 N = I 1 N
80 9 79 exlimddv N 0 ¬ S Fin 1 N S A N c c : 1 A 1-1 S c 1 N = I 1 N