Metamath Proof Explorer


Theorem eldisjim

Description: If the elements of A are disjoint, then it has equivalent coelements (former prter1 ). Special case of disjim . (Contributed by Rodolfo Medina, 13-Oct-2010) (Revised by Mario Carneiro, 12-Aug-2015) (Revised by Peter Mazsa, 8-Feb-2018) ( Revised by Peter Mazsa, 23-Sep-2021.)

Ref Expression
Assertion eldisjim ElDisj A CoElEqvRel A

Proof

Step Hyp Ref Expression
1 disjim Disj E -1 A EqvRel E -1 A
2 df-eldisj ElDisj A Disj E -1 A
3 df-coeleqvrel CoElEqvRel A EqvRel E -1 A
4 1 2 3 3imtr4i ElDisj A CoElEqvRel A