Metamath Proof Explorer


Theorem eldisjim2

Description: Alternate form of eldisjim . (Contributed by Peter Mazsa, 30-Dec-2024)

Ref Expression
Assertion eldisjim2 ElDisj A EqvRel A

Proof

Step Hyp Ref Expression
1 disjim Disj E -1 A EqvRel E -1 A
2 df-eldisj ElDisj A Disj E -1 A
3 df-coels A = E -1 A
4 3 eqvreleqi EqvRel A EqvRel E -1 A
5 1 2 4 3imtr4i ElDisj A EqvRel A