Metamath Proof Explorer


Theorem eldisjlem19

Description: Special case of disjlem19 (together with membpartlem19 , this is former prtlem19 ). (Contributed by Peter Mazsa, 21-Oct-2021)

Ref Expression
Assertion eldisjlem19 B V ElDisj A u dom E -1 A B u u = B A

Proof

Step Hyp Ref Expression
1 df-eldisj ElDisj A Disj E -1 A
2 disjlem19 B V Disj E -1 A u dom E -1 A B u E -1 A u E -1 A = B E -1 A
3 1 2 biimtrid B V ElDisj A u dom E -1 A B u E -1 A u E -1 A = B E -1 A
4 3 imp B V ElDisj A u dom E -1 A B u E -1 A u E -1 A = B E -1 A
5 4 expdimp B V ElDisj A u dom E -1 A B u E -1 A u E -1 A = B E -1 A
6 eccnvepres3 u dom E -1 A u E -1 A = u
7 6 eleq2d u dom E -1 A B u E -1 A B u
8 6 eqeq1d u dom E -1 A u E -1 A = B E -1 A u = B E -1 A
9 7 8 imbi12d u dom E -1 A B u E -1 A u E -1 A = B E -1 A B u u = B E -1 A
10 9 adantl B V ElDisj A u dom E -1 A B u E -1 A u E -1 A = B E -1 A B u u = B E -1 A
11 5 10 mpbid B V ElDisj A u dom E -1 A B u u = B E -1 A
12 df-coels A = E -1 A
13 12 eceq2i B A = B E -1 A
14 13 eqeq2i u = B A u = B E -1 A
15 11 14 imbitrrdi B V ElDisj A u dom E -1 A B u u = B A
16 15 expimpd B V ElDisj A u dom E -1 A B u u = B A
17 16 ex B V ElDisj A u dom E -1 A B u u = B A