Metamath Proof Explorer


Theorem eldisjn0el

Description: Special case of disjdmqseq (perhaps this is the closest theorem to the former prter2 ). (Contributed by Peter Mazsa, 26-Sep-2021)

Ref Expression
Assertion eldisjn0el ElDisj A ¬ A A / A = A

Proof

Step Hyp Ref Expression
1 disjdmqseq Disj E -1 A dom E -1 A / E -1 A = A dom E -1 A / E -1 A = A
2 df-eldisj ElDisj A Disj E -1 A
3 n0el3 ¬ A dom E -1 A / E -1 A = A
4 dmqs1cosscnvepreseq dom E -1 A / E -1 A = A A / A = A
5 4 bicomi A / A = A dom E -1 A / E -1 A = A
6 3 5 bibi12i ¬ A A / A = A dom E -1 A / E -1 A = A dom E -1 A / E -1 A = A
7 1 2 6 3imtr4i ElDisj A ¬ A A / A = A