Metamath Proof Explorer


Theorem eldisjn0elb

Description: Two forms of disjoint elements when the empty set is not an element of the class. (Contributed by Peter Mazsa, 31-Dec-2024)

Ref Expression
Assertion eldisjn0elb ElDisj A ¬ A Disj E -1 A dom E -1 A / E -1 A = A

Proof

Step Hyp Ref Expression
1 df-eldisj ElDisj A Disj E -1 A
2 n0el3 ¬ A dom E -1 A / E -1 A = A
3 1 2 anbi12i ElDisj A ¬ A Disj E -1 A dom E -1 A / E -1 A = A