Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
eldm
Next ⟩
eldm2
Metamath Proof Explorer
Ascii
Unicode
Theorem
eldm
Description:
Membership in a domain. Theorem 4 of
Suppes
p. 59.
(Contributed by
NM
, 2-Apr-2004)
Ref
Expression
Hypothesis
eldm.1
⊢
A
∈
V
Assertion
eldm
⊢
A
∈
dom
⁡
B
↔
∃
y
A
B
y
Proof
Step
Hyp
Ref
Expression
1
eldm.1
⊢
A
∈
V
2
eldmg
⊢
A
∈
V
→
A
∈
dom
⁡
B
↔
∃
y
A
B
y
3
1
2
ax-mp
⊢
A
∈
dom
⁡
B
↔
∃
y
A
B
y