Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
eldm2
Next ⟩
dmss
Metamath Proof Explorer
Ascii
Unicode
Theorem
eldm2
Description:
Membership in a domain. Theorem 4 of
Suppes
p. 59.
(Contributed by
NM
, 1-Aug-1994)
Ref
Expression
Hypothesis
eldm.1
⊢
A
∈
V
Assertion
eldm2
⊢
A
∈
dom
⁡
B
↔
∃
y
A
y
∈
B
Proof
Step
Hyp
Ref
Expression
1
eldm.1
⊢
A
∈
V
2
eldm2g
⊢
A
∈
V
→
A
∈
dom
⁡
B
↔
∃
y
A
y
∈
B
3
1
2
ax-mp
⊢
A
∈
dom
⁡
B
↔
∃
y
A
y
∈
B