Metamath Proof Explorer


Theorem eldmcoa

Description: A pair <. G , F >. is in the domain of the arrow composition, if the domain of G equals the codomain of F . (In this case we say G and F are composable.) (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses coafval.o · ˙ = comp a C
coafval.a A = Arrow C
Assertion eldmcoa G dom · ˙ F F A G A cod a F = dom a G

Proof

Step Hyp Ref Expression
1 coafval.o · ˙ = comp a C
2 coafval.a A = Arrow C
3 df-br G dom · ˙ F G F dom · ˙
4 otex dom a f cod a g 2 nd g dom a f dom a g comp C cod a g 2 nd f V
5 4 rgen2w g A f h A | cod a h = dom a g dom a f cod a g 2 nd g dom a f dom a g comp C cod a g 2 nd f V
6 eqid comp C = comp C
7 1 2 6 coafval · ˙ = g A , f h A | cod a h = dom a g dom a f cod a g 2 nd g dom a f dom a g comp C cod a g 2 nd f
8 7 fmpox g A f h A | cod a h = dom a g dom a f cod a g 2 nd g dom a f dom a g comp C cod a g 2 nd f V · ˙ : g A g × h A | cod a h = dom a g V
9 5 8 mpbi · ˙ : g A g × h A | cod a h = dom a g V
10 9 fdmi dom · ˙ = g A g × h A | cod a h = dom a g
11 10 eleq2i G F dom · ˙ G F g A g × h A | cod a h = dom a g
12 fveq2 g = G dom a g = dom a G
13 12 eqeq2d g = G cod a h = dom a g cod a h = dom a G
14 13 rabbidv g = G h A | cod a h = dom a g = h A | cod a h = dom a G
15 14 opeliunxp2 G F g A g × h A | cod a h = dom a g G A F h A | cod a h = dom a G
16 fveqeq2 h = F cod a h = dom a G cod a F = dom a G
17 16 elrab F h A | cod a h = dom a G F A cod a F = dom a G
18 17 anbi2i G A F h A | cod a h = dom a G G A F A cod a F = dom a G
19 an12 G A F A cod a F = dom a G F A G A cod a F = dom a G
20 3anass F A G A cod a F = dom a G F A G A cod a F = dom a G
21 19 20 bitr4i G A F A cod a F = dom a G F A G A cod a F = dom a G
22 15 18 21 3bitri G F g A g × h A | cod a h = dom a g F A G A cod a F = dom a G
23 3 11 22 3bitri G dom · ˙ F F A G A cod a F = dom a G