Metamath Proof Explorer


Theorem eldmeldmressn

Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018)

Ref Expression
Assertion eldmeldmressn X dom F X dom F X

Proof

Step Hyp Ref Expression
1 eldmressnsn X dom F X dom F X
2 elinel2 X X dom F X dom F
3 dmres dom F X = X dom F
4 2 3 eleq2s X dom F X X dom F
5 1 4 impbii X dom F X dom F X