Metamath Proof Explorer


Theorem eldmne0

Description: A function of nonempty domain is not empty. (Contributed by Thierry Arnoux, 20-Nov-2023)

Ref Expression
Assertion eldmne0 X dom F F

Proof

Step Hyp Ref Expression
1 ne0i X dom F dom F
2 dmeq F = dom F = dom
3 dm0 dom =
4 2 3 eqtrdi F = dom F =
5 4 necon3i dom F F
6 1 5 syl X dom F F