Metamath Proof Explorer


Theorem eldmressnALTV

Description: Element of the domain of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion eldmressnALTV B V B dom R A B = A A dom R

Proof

Step Hyp Ref Expression
1 eldmres B V B dom R A B A y B R y
2 elsng B V B A B = A
3 eldmg B V B dom R y B R y
4 3 bicomd B V y B R y B dom R
5 2 4 anbi12d B V B A y B R y B = A B dom R
6 1 5 bitrd B V B dom R A B = A B dom R
7 eqelb B = A B dom R B = A A dom R
8 6 7 bitrdi B V B dom R A B = A A dom R