Metamath Proof Explorer


Theorem eldmressnsn

Description: The element of the domain of a restriction to a singleton is the element of the singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion eldmressnsn A dom F A dom F A

Proof

Step Hyp Ref Expression
1 snidg A dom F A A
2 dmressnsn A dom F dom F A = A
3 1 2 eleqtrrd A dom F A dom F A