Metamath Proof Explorer


Theorem eldmrexrn

Description: For any element in the domain of a function there is an element in the range of the function which is the function value for the element of the domain. (Contributed by Alexander van der Vekens, 8-Dec-2017)

Ref Expression
Assertion eldmrexrn Fun F Y dom F x ran F x = F Y

Proof

Step Hyp Ref Expression
1 fvelrn Fun F Y dom F F Y ran F
2 eqid F Y = F Y
3 eqeq1 x = F Y x = F Y F Y = F Y
4 3 rspcev F Y ran F F Y = F Y x ran F x = F Y
5 1 2 4 sylancl Fun F Y dom F x ran F x = F Y
6 5 ex Fun F Y dom F x ran F x = F Y