Metamath Proof Explorer


Theorem eldprdi

Description: The domain of definition of the internal direct product, which states that S is a family of subgroups that mutually commute and have trivial intersections. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses eldprdi.0 0 ˙ = 0 G
eldprdi.w W = h i I S i | finSupp 0 ˙ h
eldprdi.1 φ G dom DProd S
eldprdi.2 φ dom S = I
eldprdi.3 φ F W
Assertion eldprdi φ G F G DProd S

Proof

Step Hyp Ref Expression
1 eldprdi.0 0 ˙ = 0 G
2 eldprdi.w W = h i I S i | finSupp 0 ˙ h
3 eldprdi.1 φ G dom DProd S
4 eldprdi.2 φ dom S = I
5 eldprdi.3 φ F W
6 eqid G F = G F
7 oveq2 f = F G f = G F
8 7 rspceeqv F W G F = G F f W G F = G f
9 5 6 8 sylancl φ f W G F = G f
10 1 2 eldprd dom S = I G F G DProd S G dom DProd S f W G F = G f
11 4 10 syl φ G F G DProd S G dom DProd S f W G F = G f
12 3 9 11 mpbir2and φ G F G DProd S