Metamath Proof Explorer


Theorem elecg

Description: Membership in an equivalence class. Theorem 72 of Suppes p. 82. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion elecg A V B W A B R B R A

Proof

Step Hyp Ref Expression
1 elimasng B W A V A R B B A R
2 1 ancoms A V B W A R B B A R
3 df-ec B R = R B
4 3 eleq2i A B R A R B
5 df-br B R A B A R
6 2 4 5 3bitr4g A V B W A B R B R A