Metamath Proof Explorer


Theorem eleigveccl

Description: Closure of an eigenvector of a Hilbert space operator. (Contributed by NM, 23-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion eleigveccl T : A eigvec T A

Proof

Step Hyp Ref Expression
1 eleigvec2 T : A eigvec T A A 0 T A span A
2 1 biimpa T : A eigvec T A A 0 T A span A
3 2 simp1d T : A eigvec T A