Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
elelsuc
Next ⟩
sucel
Metamath Proof Explorer
Ascii
Unicode
Theorem
elelsuc
Description:
Membership in a successor.
(Contributed by
NM
, 20-Jun-1998)
Ref
Expression
Assertion
elelsuc
⊢
A
∈
B
→
A
∈
suc
⁡
B
Proof
Step
Hyp
Ref
Expression
1
orc
⊢
A
∈
B
→
A
∈
B
∨
A
=
B
2
elsucg
⊢
A
∈
B
→
A
∈
suc
⁡
B
↔
A
∈
B
∨
A
=
B
3
1
2
mpbird
⊢
A
∈
B
→
A
∈
suc
⁡
B