Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class membership
eleq12
Next ⟩
eleq1i
Metamath Proof Explorer
Ascii
Unicode
Theorem
eleq12
Description:
Equality implies equivalence of membership.
(Contributed by
NM
, 31-May-1999)
Ref
Expression
Assertion
eleq12
⊢
A
=
B
∧
C
=
D
→
A
∈
C
↔
B
∈
D
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
A
=
B
→
A
∈
C
↔
B
∈
C
2
eleq2
⊢
C
=
D
→
B
∈
C
↔
B
∈
D
3
1
2
sylan9bb
⊢
A
=
B
∧
C
=
D
→
A
∈
C
↔
B
∈
D