Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Classes
Class membership
eleq12d
Next ⟩
eleq1a
Metamath Proof Explorer
Ascii
Unicode
Theorem
eleq12d
Description:
Deduction from equality to equivalence of membership.
(Contributed by
NM
, 31-May-1994)
Ref
Expression
Hypotheses
eleq12d.1
⊢
φ
→
A
=
B
eleq12d.2
⊢
φ
→
C
=
D
Assertion
eleq12d
⊢
φ
→
A
∈
C
↔
B
∈
D
Proof
Step
Hyp
Ref
Expression
1
eleq12d.1
⊢
φ
→
A
=
B
2
eleq12d.2
⊢
φ
→
C
=
D
3
2
eleq2d
⊢
φ
→
A
∈
C
↔
A
∈
D
4
1
eleq1d
⊢
φ
→
A
∈
D
↔
B
∈
D
5
3
4
bitrd
⊢
φ
→
A
∈
C
↔
B
∈
D